
OAuth 2.0 and OpenID Connect

David van der Maas

Agenda

● History and use cases
● What is Oauth and OpenID Connect
● How does it work
● Different flows
● Access Manager configurations

Going back in time

● Simpe web or form authentication

● Hash password
● Verify hash
● Look up user info
● Look up authorization

● Set-Cookie: sessionid=f00b4r; Max-Age: 3600;

Downside
● Security
● Maintenance

Statement: OAuth is hard to comprehend

It’s not but there is some confusion about Oauth
● Terminology & Jargon
● Various and dissimilar advice
● Various possibilities

Going back in time: Use cases

● Local or form login
● Cross security domain SSO (SAML2.0)

– Still used today, even getting more popular

● Mobile device app login
– since 2007 with the first iPhone

● Delegated authorization
– How can an app access my data without my

credentials

Going back in time

Delegated authorization as we shouldn’t do it

Challenges

It’s all about securing resources (APIs)
GET https:// www.myapp.nl/api/v2/secrets

● We want no passwords in files!
– Who where what , mobile

● Delegate access to act on your behalf
● Selective access
● Revoke access from a central point

Do you use Oauth in your everyday activities

● As a developer
● As a system administrator
● As an end user

OAuth is the solution

Probably you do ….
Oauth powers the billions of
social logins that happen every
day

Challenge: Limited Access for Third Party Apps & Web

Sign in with NAM

‘Open’ Banking / PSD2

Access Manager

Callback or RedirectURI

Validate

Get payments received

Make Payment

User wants to delegate selective access to NuaPay

This entire
interaction is
defined by OAuth
2.0 Protocol

What is OAuth 2.0

The OAuth 2.0 authorization framework enables a third-party
application (nuapay) to obtain limited access to an HTTP server
or data (Bank APIs) on behalf of a resource owner (customer).

RFC 6749

OAuth 2.0 defines how to:
● Delegate access
● Allow Selective access
● Revoke access

Oauth 2.0 does not how to authenticate a user

Delegated authorization with OAuth 2.0

I trust my insurance provider. I maybe
trust my online fitness account and my
mobile app and I do want them to have
access to my insurance benefits only

myfitnesspal.com Mobile app

OAuth 2.0 flow for delegated authorization

Sign in with NAM

myfitnesspal.com

myfitnesspal.com/redir-uri

OAuth 2.0 terminology (actors)

● Resource owner
● Client
● Authorization server
● Resource server
● Authorization grant
● Redirect URI (callback)
● Access token

Tokens are the key

● Token have an expiration dat

● Tokens can be renewed

● Tokens can be revoked

● Token have scopes (permissions)

OAuth 2.0 authorization code flow

Sign in with NAM

myfitnesspal.com

Resource owner

Go to authorization server

Redirect URI:myfitnesspal.com/callback
Response type: code

myfitnesspal.com/redir-uri

Exch
an

ge a
uthoriz

ati
on

Code f
or a

cce
ss

token

Connect to resource
server with access
token

Client Authorization Server

Back to redirect URI
with authorization code

More OAuth 2.0 terminology

● Scopes
● Consent

OAuth 2.0 authorization code flow

Sign in with NAM

myfitnesspal.com

Resource owner

Go to authorization server

Redirect URI:myfitnesspal.com/callback
Response type: code
Scope: profile benefits

myfitnesspal.com/redir-uri

Exch
an

ge a
uthoriz

ati
on

Code f
or a

cce
ss

token

Connect to resource
server with access
token, get profile &
benefits

Client Authorization Server

Back to redirect URI
with authorization code

Request consent
from resource
owner

Even more OAuth 2.0 terminology

Client identification at the Authorization server
● Client ID
● Client Secret
● Client needs to be registered

Again more OAuth 2.0 terminology

Why exchange authorization code for access token ?
● Back channel (secure channel)
● Front channel (less secure channel)

Where are client ID & secrets stored and where are tokens mantained
● Type of client defines flow (grants)
● Single page client (javascript, angular),

– no secure storage capabilities for storing client secret

● Web application (jsp on front end, java servlet on back end)
– has secure storage capabilities for storing client ID and secret in the Java layer

OAuth 2.0 authorization code flow

Sign in with NAM

myfitnesspal.com

Resource owner

Go to authorization server
(front channel)

Redirect URI:myfitnesspal.com/callback
Response type: code
Scope: profile benefits

myfitnesspal.com/redir-uri

Exch
an

ge a
uthori

zat
ion

 co
de f

or
acc

ess
 to

ken
.

sen
ding with

 with
 cli

en
t ID

 & se
cre

t (
back

chan
nel)

Client Authorization Server

Back to redirect URI
with authorization code
(front channel)

Request consent
from resource
ownerConnect to resource

server with access
token, get profile &
benefits (back
channel)

Tokens

● Access token can be exposed on the browser (implicit grant)
● if an access token is compromised there is only a short exposure

Access token
● Like a session Will expire
● Contains permissions (scopes)
● Should have short expiration
● Not persisted anywhere

Refresh token
● Like a password
● Exchange for a new Access Token
● Long lived, can be revoked
● Token metadata stored in user attribute

ID token
● Contains user details (claims)
● Part of OpenID Connect
● Mainly used by client
● Not persisted anywghere

without refresh token
● send API request with access

token
● if access token is invalid, fail

and ask user to re-authenticate

with refresh token
● send API request with access token
● If access token is invalid, try to update it using refresh token
● if refresh request passes, update the access token and re-send the

initial API request
● If refresh request fails, ask user to re-authenticate

OAuth 2.0 authorization code flow

Sign in with NAM

myfitnesspal.com

Resource owner

Go to authorization server
(front channel)

Redirect URI:myfitnesspal.com/callback
Response type: code
Scope: profile benefits

myfitnesspal.com/redir-uri

Exch
an

ge a
uthoriz

ati
on co

de f
or a

cce
ss

&

ref
res

h to
ken

 OR update
 ac

ces
s w

ith
 re

fre
sh

token
, s

en
ding with

 with
 cli

en
t ID

 & se
cre

t

(back
 ch

an
nel)

Client Authorization Server

Back to redirect URI
with authorization code
(front channel)

Request consent
from resource
ownerConnect to resource

server with access
token, get profile &
benefits (back
channel)

Going back in time: Use cases until 2014

● Simple login (OAuth 2.0)
● Single sign on across sites (OAuth 2.0)
● Mobile app login (OAuth 2.0)
● Delegated authorization (OAuth 2.0)

Authentication

Authentication

Authentication

Authorization

OAuth 2.0 and OpenID Connect

Using OAuth for authentication
● No standards for exchanging user info
● Every deployment is different
● No common set of scope

OpenID Connect is for authentication, OAuth is for authorization
● Not even a seperate protocol, a layer on Oauth
● Provider issues Access & Refresh token AND ID Token
● Standard set of scopes and implementation
● Userinfo endpoint fot getting more information and validate user

OAuth 2.0 authorization code flow

Sign in with NAM

myfitnesspal.com

Resource owner

Go to authorization server
(front channel)

Redirect URI:myfitnesspal.com/callback
Response type: code
Scope: openid profile benefits

myfitnesspal.com/redir-uri

Exch
an

ge a
uthori

zat
ion co

de f
or a

cce
ss,

 re
fre

sh & ID

token
 OR update

 ac
ces

s w
ith

 re
fre

sh to
ken

, s
en

ding

with
 with

 cli
en

t ID
 & se

cre
t (b

ack
 ch

an
nel)

Client Authorization Server

Back to redirect URI
with authorization code
(front channel)

Request consent
from resource
owner

Hello David

Connect to resource
server with access
token, get profile &
benefits (back
channel)

Use cases today

● Simple login (OIDC)
● Single sign on across sites (OIDC)
● Mobile app login (OIDC)
● Delegated authorization (OIDC)

Authentication

Authentication

Authentication

Authorization

OAuth2.0 and OIDC

OAuth 2.0 : Authorization
● Granting access to API
● Getting access to user data in other systems

OpenID Connect : Authentication
● User login
● Making accounts available in other systems

Authorization Code flow: Start

https://login.dirxml.nl/nidp/oauth/nam/authz?

 scope=profile+openid+fedprofile&

 response_type=code&

 redirect_uri=https://myapp.webapps.com/netiq-playground/oauth2client&

 client_id=002eb3d9-e9af-4370-bb49-00ae9d87f5b3

Authorization Code flow: Callback

https://myapp.webapps.com/netiq-playground/oauth2client?

 error=access_denied&

 error_description=user has denied the grants to client

https://myapp.webapps.com/netiq-playground/oauth2client?

 code=eyJhbGciOiJBMTI4S1ciLCJlbmMiOiJBMTI4R0NNIiwi&

 scope=fedprofile+profile

Authorization Code flow: Request Access Token

POST https://login.dirxml.nl/nidp/oauth/nam/token

Content-Type: application/x-www-form-urlencoded

 code=eyJhbGciOiJBMTI4S1c&

 grant_type=authorization_code&

 client_secret=_aM6OUG8nG5v_NWTdddThisIsFakeBcXKlSJlOeVUS&

 client_id=002eb3d9-e9af-4370-bb49-00ae9d87f5b3&

 redirect_uri=https://myapp.webapps.com/netiq-playground/oauth2client

Authorization Code flow: Request Access Token

POST https://login.dirxml.nl/nidp/oauth/nam/token

Content-Type: application/x-www-form-urlencoded

 code=eyJhbGciOiJBMTI4S1c&

 grant_type=grant_type=refresh_toke&

 refresh_token=eyJraadfcSDEaWQssssiOi&

 client_secret=_aM6OsssUG8nG5v_NWTdddThisIsFakeBcXKlSJlOeVUS&

 client_id=002eb3d9-e9af-4370-bb49-00ae9d87f5b3&

 redirect_uri=https://myapp.webapps.com/netiq-playground/oauth2client

Authorization Code flow: Get Access Token

 {

 “access_token”: “xnrhmhZuZRxX5AlsoFake48SVefE6peJf”,

 “expires_in”: 2480,

 “token_type”: “Bearer”,

 }

Authorization Code flow: Using Access Token

GET https://myapp.webapps.com/api/oauth/v4/benefits

Authorization: Bearer xnrhmhZuZRxX5AlsoFake48SVefE6peJf

Endpoint validates token

Endpoint uses scope for Authorization

Calling userinfo endpoint

GET login.dirxml.nl/nidp/oauth/nam/userinfo

Authorization: Bearer kiuniIuyIYYGysiIUSuhinIUS

200 OK

Content-Type: application/json

{

 “sub”: “david@dirxml.nl”

 “name”: “david van der Maas”

 “shoesize”: “42”

}

https://myapp.webapps.com/netiq-playground/oauth2client

Different OAuth 2.0 flows

myfitnesspal.com

Mobile app

● Authorization code
● Authorization code with PKCE
● Implicit
● Resource Owner Password
credentials

● Client credentials
● SAML 2.0 Bearer grant

Oauth 2.0 flow: Implicit Grant

Implicit grant

● Mainly for public clients
● Front channel only
● Simple to implement
● Access Token sent thru

browser
● No refresh token
● Cannot securely store

client secret

Suitable for

● Single Page Applications
● Mobile Apps
● Desktop Apps

Authorization Server

1. Register
2. Save client ID (ignore secret)

4.Access & ID Token

5. Access token

6. Validate

3. Login and consent

response_type=token

Oauth 2.0 flow: Authorization Code Grant

Authorization code grant

● Confidential clients
● Front and back channel
● Clients must handle

browser redirects &
HTTPS

● Client secret & ID
securely stored

Suitable for

● Web applications
● Mobile Apps
● Native apps (with PKCE,

Proof Key for Code
Exchange)

Authorization Server

1. Register
2. Save client ID & secret in the server

4. Auth code

8. Validate token

3. Login and consent

response_type=code

7. Access with token

6. Get Access, ID
& refresh token

5. Send client ID
Secret and code

Oauth 2.0 flow: Resource owner
password credentials

Authorization code grant

● Trusted clients
● Back channel only
● Clients is trusted with

name / password (!)
● Client & User secret & ID

securely stored
● Refresh token supported

Suitable for

● Highly trusted apps
● Native apps (to migrate)

Authorization Server

1. Register
2. Save client ID & secret in the server

3. Login

7. Validate token

6. Access with token

5. Get Access
& refresh token

4. Authenticate
(user & client)

grant_type=password

Oauth 2.0 flow: Client credentials

Authorization code grant

● Machine to machine
● No user involved
● Back channel only
● Clients is trusted with

name / password (!)
● Refresh token not

supported

Suitable for

● Headless clients
● Microservices
● APIs – Batch processing

Authorization Server

1. Register
2. Save client ID & secret in the server

6. Validate token

5. Access with token

4. Get Access
token

3. Authenticate
(client crendentials)

grant_type=client_credentials

Registering Oauth Client Application

Access Manager
Administrator can

register and manage all
OAuth clients.

Administration

Console

IDP User Portal REST API

Can be used to create
multiple clients at a

time. Oauth Developer
Docs contains all

details.

OAuth Developer :
Register and manage

their own OAuth clients.

OAuth Admin : Register
and manage all OAuth

clients.

OAuth Support in Access Manager

• The IDP functions as an OAuth 2.0 authorization server
• IDP can authenticate resource owners, obtain their authorization and
issue access token to client applications

• Supports
• Authorization code grants
• Implicit grants
• Resource Owner Credentials grant
• Client credential grants

• OpenID Connect implements a single sign-on protocol on top of the
OAuth authorization process.

OAuth Support in Access Manager (Cont.)

• Validate OAuth access tokens without redirection
• Provides ability to convert legacy applications to OAuth flow

• Access Gateway supports access tokens from
x-Access IDP
• Better integration with x-Access
• SSO to IDM components (OSP)

• REST APIs for client registration and management

OAuth Developer

● Required IDP jobs:
● NAM_OAUTH2_ADMIN

– Register and manage all OAuth clients in IDP Portal

● NAM_OAUTH2_DEVELOPER
– Register and manage their own OAuth clients

www.microfocus.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 13
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 42
	Slide 43
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 53
	Slide 56
	Slide 57

